A non-cyclic one-relator group all of whose finite quotients are cyclic
نویسندگان
چکیده
منابع مشابه
Finite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملA characterization of a pomonoid $S$ all of its cyclic $S$-posets are regular injective
This work is devoted to give a charcaterization of a pomonoid $S$ such that all cyclic $S$-posets are regular injective.
متن کاملOn one-relator quotients of the modular group
We investigate the modular group as a finitely presented group. It has a large collection of interesting quotients. In 1987 Conder substantially identified the onerelator quotients of the modular group which are defined using representatives of the 300 inequivalent extra relators with length up to 24. We study all such quotients where the extra relator has length up to 36. Up to equivalence, th...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملWhich elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1969
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700007783